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Approximate Symmetries and Conservation Laws
with Applications

A. H. Kara,1 F. M. Mahomed,2,4 and G. UÈ nal3

Received April 29, 1999

The relationship between the approximate Lie±BaÈ cklund symmetries and the
approximate conserved forms of a perturbed equation is studied. It is shown that
a hierarchy of identities exists by which the components of the approximate
conserved vector or the associated approximate Lie±BaÈ cklund symmetries are
determined by recursive formulas. The results are applied to certain classes of
linear and nonlinear wave equations as well as a perturbed Korteweg±de Vries
equation. We construct approximate conservation laws for these equations without
regard to a Lagrangian.

1. INTRODUCTION

For differential equations, the relationship between symmetries and con-

servation laws has been a subject of intensive investigation, the best known

being the work of Noether (1918) for Euler±Lagrange equations (see also

Ibragimov et al. 1998). Recently Kara and Mahomed (1998, 1999) showed
that for differential equations a formula governs the relation between the

components of the conserved vector and the associated Lie±BaÈ cklund sym-

metry generator for systems which need not be derivable from a variational

principle, for, e.g., evolution-type equations. This was used mainly to con-

struct conservation laws for such systems.
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The theory of approximate symmetries associated with differential equa-

tions with a small parameter (perturbed/approximate equations) has been

developed recently and is a subject of much discussion. For an account of
this theory, we refer the reader to Baikov et al. (1991, 1996). In Baikov et
al. (1996), the notion of approximate conservation laws is introduced with

specific regard to approximate Noether symmetries, i.e., symmetries associ-

ated with a Lagrangian of the perturbed equation. In this paper, we consider

these ideas without recourse to variational principles, i.e., we show that

approximate conservation laws can be associated with approximate symmet-
ries (more generally, Lie±BaÈ cklund symmetries) for systems which may not

possess a Lagrangian. Moreover, we show that these conservation laws may

be constructed algorithmically using known symmetries of the equations.

One can thus automate this procedure using computer algebra.

Here we consider differential equations of the form

E b (x, u, u(1), . . . , u(r); e ) 5 0, b 5 1, . . . , mÄ (1.1)

where x 5 (x1, x2, . . . , xn), u 5 (u1, u2, . . . , um), e is a small parameter, and

u(1), u(2), . . . , u(r) are various order derivatives, namely u a
i 5 D i (u

a ), u a
ij 5

DjDi (u
a ), . . . , being the first, second, . . . , derivatives, respectively, with

Di 5
-

- xi 1 u a
i

-
- u a 1 u a

ij
-

- u a
j

1 ? ? ? , i 5 1, . . . , n (1.2)

the total derivative operator with respect to xi. Throughout the paper, the

following definitions of approximate symmetries and conservation laws of

(1.1) will be adopted. For more details, see Baikov et al. (1991, 1996).

Definition 1. An operator x is a kth-order approximate symmetry of

(1.1) if

x (E b ) ) E b 5 0 5 O( e k 1 1) (1.3)

where

x 5 X0 1 e X1 1 ? ? ? 1 e kXk (1.4)

and

Xb 5 j i
b

-
- xi 1 h a

b
-

- u a 1 z a
b, i

-
- u a

i

1 z a
b, i1i2

-
- u a

i1i2

1 ? ? ? , b 5 1, . . . , k

(1.5)
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where j i
b, h a

b P ! and the additional coefficients are

z a
b, i 5 D i (W

a
b ) 1 j j

bu
a
ij

z a
b, i1i2 5 D i1Di2 (W a

b ) 1 j j
bu

a
ji1i2 (1.6)

? ? ?

and W a
b is the Lie characteristic function defined by

W a
b 5 h a

b 2 j j
bu

a
j (1.7)

Note. The Xb are Lie±BaÈ cklund operators. In Baikov et al. (1991, 1996),

the case X0 Þ 0 defines X0 as a stable symmetry and unstable otherwise.

Definition 2. An approximate conserved vector 7 5 (71, 72, . . . , 7n)
of (1.1) satisfies

D i7
i ) (1.1) 5 O( e k 1 1) (1.8)

where

7i 5 T i
0 1 e T i

1 1 . . . 1 e kT i
k (1.9)

Equation (1.8) is an approximate conservation law for (1.1).
We can define stable and unstable conservation laws in accordance with

the above.

In Section 2, we present the relationship between the approximate conser-

vation laws and approximate symmetries for the system (1.1). In Section

3 we demonstrate our results by considering some examples that arise in

mathematical physics.

2. APPROXIMATE SYMMETRIES AND CONSERVATION LAWS

In this section, we investigate and extend the ideas and results in Kara

and Mahomed (1998, 1999) to the perturbed differential equation (1.1).

Definition 3. A p-form

v 5 fi1i2...ip(x, u, u(1), . . . , u(l); e ) dx i1 Ù dx i2 Ù . . . Ù dx ip (2.1)

is approximately conserved (of order k) if

D v ) (1.1) 5 O( e k 1 1) (2.2)

where

D v 5 (Dj fi1i2...ip) dx j Ù dx i1 Ù dx i2 Ù . . . Ù dx ip
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Lemma 1. The (n 2 1)-form

v 5 7i -
- x i û V (2.3)

where V 5 dx1 Ù dx2 Ù . . . Ù dxn, is approximately conserved if and only

if D i 7
i ) (1.1) 5 O( e k 1 1).

Proof. This follows directly since

D v 5 (D i7
i) V 5 O( e k 1 1) V

Definition 4. A p-form (2.1) is approximately invariant under x if

+ x v 5 O( e k 1 1) (2.4)

where

+X v 5 X û D v 1 D(X û v ) (2.5)

i.e., the Cartan formula is valid.

Theorem 1. The (n 2 1)-form given in (2.3) is approximately invariant
under x if and only if the following system of n(k 1 1) identities hold:

X0(T
i
0) 1 D j ( j j

0)T
i
0 2 T j

0 Dj ( j i
0) 5 0

X0(T
i
1) 1 Dj ( j j

0)T
i
1 2 T j

1Dj ( j i
0) 5 2 (X1(T

i
0) 1 Dj ( j j

1)T
i
0 2 T j

0Dj ( j i
1))

X0(T
i
2) 1 Dj ( j j

0)T
i
2 2 T j

2Dj ( j i
0) 5 2 (X2(T

i
0) 1 Dj ( j j

2)T
i
0 2 T j

0Dj ( j i
2)

1 X1(T
i
1) 1 D j ( j j

1)T
i
1 2 T j

1D j ( j i
1)) (2.6)

???

X0(T
i
k) 1 Dj ( j j

0)T
i
k 2 T j

kDj ( j i
0) 5 2 (Xk(T

i
0) 1 Dj ( j j

k)T
i
0 2 T j

0Dj ( j i
k)

1 . . . 1 X1(T
i
k 2 1) 1 Dj ( j j

1)T
i
k 2 1

2 T j
k 2 1Dj ( j i

1))

Proof. The kth-order approximate form v reads

v 5 v 0 1 e v 1 1 . . . 1 e k v k (2.7)

Then (2.4) takes the form

+X0 1 e X1 1 . . . 1 e kXk ( v 0 1 e v 1 1 . . . 1 e k v k) 5 O( e k 1 1) (2.8)

Rearranging (2.8) gives
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+X0 v 0 1 e (+X1 v 0 1 +X0 v 1) 1 e 2(+X2 v 0 1 +X1 v 1 1 +X0 v 2) 1 . . .

1 e k(+Xk v 0 1 +Xk 2 1 v 1 1 . . . 1 +X0 v k) 5 0

Separating by powers of e , we obtain

+X0 v 0 5 0

+X1 v 0 1 +X0 v 1 5 0 (2.9)

?? ?

+Xk v 0 1 +Xk 2 1 v 1 1 . . . 1 +X1 v k 2 1 1 +X0 v k 5 0

Now let 7b 5 T j
b - / - x j, b 5 0, . . . , k. Then

v s 5 7s û V

In the identity

+Xr(7s û V ) 5 [Xr , 7s] û V 1 7s û +Xr V (2.10)

we have

+Xr V 5 (D j j j
r) V (2.11)

and

[Xr , 7s] 5 (Xr(T
i
s) 2 Dj ( j i

r)T
j
s)

-
- xi (2.12)

so that

+Xr(7sû V ) 5 H (Xr(T
i
s) 2 Dj ( j i

r)T
j
s 1 Dj j j

r)
-

- xi J û V (2.13)

Substituting equation (2.13) into (2.9) yields the required result in (2.6).

As (2.6) is connected to (2.9) via the identity in (2.10), the steps given

above are easily reversed. This proves the converse.

Remarks. Special cases of (2.6) are as follows.

1. If each of the Xb in x are canonical, the system (2.6) becomes

X0(T
i
0) 5 0

X0(T
i
1) 5 2 X1(T

i
0)

X0(T
i
2) 5 2 X2(T

i
0) 2 X1(T

i
1)

? ??
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X0(T
i
k) 5 2 Xk(T

i
0) 2 . . . 2 X1(T

i
k 2 1)

2. For the case of a single independent variable we have the following

system of (k 1 1) ordinary differential equations

X0(T0) 5 0

X0(T1) 5 2 X1(T0)

X0(T2) 5 2 X2(T0) 2 X1(T1)

?? ?

X0(Tk) 5 2 Xk(T0) 2 . . . 2 X1(Tk 2 1)

Corollary. The (n 2 2)-form

v Å 5 x û 1 7 i -
- xi 2 û V (2.14)

is approximately conserved.

Proof. From the identity (2.10), we can write

D 1 x û 7 i -
- x i û V 2 5 + x 1 7 i -

- x i û V 2 2 x û D 1 7 i -
- xi û V 2

5 O( e k 1 1) (2.15)

The proof follows directly from Lemma 1 and Theorem 1.

3. APPLICATIONS

We illustrate our results by considering some examples from the litera-

ture. We construct approximate conservation laws for examples where they

do exist and we also give examples when they do not exist.
It is interesting to note that a conservation law of a given equation need

not be stable even though its approximate conservation law is constructed

from a stable symmetry. That is, if one starts from a stable symmetry X0

with associated exact conserved vector (T 1
0, T 2

0) of the unperturbed or exact

equation, one may not end up with an approximate conservation law associated

with the approximate symmetry x 5 X0 1 e X1 1 . . . of the perturbed equation.
We give examples of these. On the other hand, a symmetry need not have

to be stable to give rise to an approximate conservation law of the perturbed

equation. This, too, is illustrated below.

Example 1. It is easy to verify that the linear perturbed wave equation
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utt 2 uxx 1 e ut 5 0 (3.1)

admits the approximate symmetry x 5 X0 1 e X1, where X0 5 - / - t and X1 5
2 1±2 u - / - u. It is clear that the unperturbed equation has conserved vector with

components T 1
0 5 ut and T 2

0 5 2 ux and has associated symmetry X0.
Here the second set of equations of (2.6), viz. X0T

1
1 5 2 X1T

1
0 and

X0T
2
1 5 2 X1T

2
0, becomes

-
- t

T 1
1 5

1

2
ut and

-
- t

T 2
1 5 2

1

2
ux

so that T 1
1 5 1±2 tut 1 f(x, u, ut , ux) and T 2

1 5 2 1±2 tux 1 g (x, u, ut , ux). Substi-

tuting into the conserved form of the perturbed case, viz.,

DtT
1
1 1 DxT

2
1 5 ut

yields, after setting g 5 0,

T 1
1 5

1

2
tut 1

1

2
u, T 2

1 5 2
1

2
tux

It is simple to check that

(71, 72) 5 (T 1
0 1 e T 1

1, T 2
0 1 e T 2

1) 5 1 ut 1 e F 1

2
tut 1

1

2
u G , 2 ux 2 e

1

2
tux 2

is a first-order approximate conserved vector of (3.1) since (1.8) for 71 and

72 gives

utt 2 uxx 1 e ut 5 2
1

2
e 2tut

It is interesting to note that another conserved vector of the unperturbed

equation (3.1) has components T 1
0 5 1±2 u2

t 1 1±2 u2
x (which gives rise to conserva-

tion of energy) and T 2
0 5 2 utux which have the same associated symmetry,

X0 5 - / - t, as above. Here, DtT
1
0 1 DxT

2
0 5 ut(utt 2 uxx). Then, DtT

1
1 1

DxT
2
1 5 u2

t is the conserved form to be solved simultaneously with (2.6). The

calculations give

T 1
1 5

1

2
tu2

t 1
1

2
tu2

x 1
1

2
uut 2

1

2
uux

T 2
1 5 2 utuxt 1

1

2
uut 2

1

2
uux

As a third case, the conserved vector with components T 1
0 5 ut and T 2

0 5
2 ux is associated with the symmetry - / - u. A corresponding approximate
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symmetry of (3.1) is - / - u 1 e u - / - u. Here the calculations reveal that no

first-order approximate conservation law exists.

As a nonlinear example, consider the wave equation

utt 1 e uut 5 uxx

For this equation, an approximate symmetry is (Baikov et al., 1991) x 5 X0

1 e X1, where X0 5 - / - u is stable and X1 5 2 1±2 tu - / - u. The routine calculations

for both pairs of (T 1
0, T 2

0) given above, viz. (ut , 2 ux) and ( 1±2 u2
t 1 1±2 u2

x, 2 utux),

both of which have associated symmetry - / - u, once again provide no approxi-

mate first-order associated pairs (T 1
1, T 2

1) and hence no approximate first-

order conservation law for these cases.

Remark. It is straightforward and simple to observe that the wave

equation

utt 1 e f 8(u)ut 5 uxx

has the conserved vector

(71, 72) 5 (ut 1 e f(u), 2 ux)

which has associated symmetry x 5 - / - t 1 e - / - x or x 5 - / - x 1 e - / - t.
These cases correspond to the exact symmetry and exact conservation law

of the equation.

Example 2. The nonlinear wave equation

utt 1 e ut 5 h(ux)uxx (3.2)

has been analyzed in Baikov et al. (1996). The conservation laws for the

exact equation ( e 5 0) for the case h 5 u a
x , a Þ 0, 2 1, 2 2, is discussed in

Vinokurov and Nurgalieva (1985). We first consider the situation when no

first-order approximate conservation law exists with respect to the approxi-

mate symmetry x 5 (t 2 1±2 e t2) - / - u admitted by equation (3.2). The exact

conserved vector (T 1
0, T 2

0) with associated symmetry t - / - u, which is stable,

is obtained from

t
- T 1

0

- u
1

- T 1
0

- ut

5 0, t
- T 2

0

- u
1

- T 2
0

- ut

5 0

which yields

T 1
0 5 b (x) tux 1 g (x)(u 2 tut) 1 d (x)

T 2
0 5 b (x(u 2 tut) 1 m (x) 1 t g (x) # h(ux) dux 1 n (t)
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Substituting these into the corresponding conserved law DtT
1
0 1 DxT

2
0 5 0

gives rise to T 1
0 5 tut 2 u, T 2

0 5 2 t * h(ux) dux. Thus, the equation

utt 1 e ut 5 u a
x uxx, a Þ 2 1 (3.3)

with T 1
0 5 tut 2 u, T 2

0 5 2 [1/( a 1 1)] tu a 1 1
x , has approximate conserved

vector (T 1
0 1 e T 1

1, T 2
0 1 e T 2

1) associated with x 5 X0 1 e X1 5 (t 2 1±2 e t2) - /

- u, where T 1
1 and T 2

1 are deduced from (2.6):

X0T
1
1 5 2 X1T

1
0, X0T

2
1 5 2 X1T

2
0

We have that T 1
1 5 2 1±2 tu 1 f(t, x, ut , ux) and T 2

1 5 g(t, x, ut , ux). The corres-

ponding conserved form

DtT
1
1 1 DxT

2
1 5 tut

gives incompatibilities, from which we conclude that (3.3) has no first-order

approximate conservation law associated with the given x .

However, a similar analysis carried out on (3.2) with h 5 u a
x , a Þ 2 1,

2 2, with the approximate symmetry X 5 - / - t 1 e - / - u yields

T 1
0 5 2 1±2 u2

t 2
1

( a 1 1)( a 1 2)
u a 1 2

x , a Þ 2 1, 2 2

T 2
0 5

1

a 1 1
utu

a 1 1
x

Solving X0T
1
1 5 2 X1T

1
0, X0T

2
1 5 2 X1T

2
0 together with the corresponding con-

served form DtT
1
1 1 DxT

2
1 5 2 u2

t yields the approximate conserved vector

components

T 1
1 5 2

a 1 2

3 a 1 4
xuxut 1

a 1 2

3 a 1 4
uut 2 uut

T 2
1 5 2

a 1 2

3 a 1 4
xu2

t 1
1

a 1 1
uu a 1 1

x

2
a 1 2

( a 1 1)(3 a 1 4)
uu a 1 1

x 2
2

3 a 1 4
xu a 1 2

x

provided a Þ 2 1, 2 2, 2 4/3 and hence a first-order approximate conservation

law for (3.3).

Example 3. We now look at the perturbed nonlinear wave equation

utt 1 e 1 uut 1
1

2
tu2

t 2
1

2
tu2

x 2 5 uxx (3.4)

which has approximate symmetry x 5 X0 1 e X1 with X0 5 - / - u stable [X0
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has associated exact conserved vector (T 1
0, T 2

0) 5 (ut , 2 ux)] and X1 5
2 1±2 tu - / - u. The conditions for an approximate conservation law with symme-

try x result in

- T 1
1

- u
5

1

2
u 1

1

2
tut ,

- T 2
1

- u
5 2

1

2
tux

The simplest solution is

T 1
1 5

1

4
u2 1

1

2
tuut , T2

1 5 2
1

2
tuux

and hence an approximate first-order conservation law results.

We now consider a third-order evolution equation.

Example 4. A number of particular perturbed cases of the Korteweg±de

Vries equation

ut 5 uux 1 uxxx 1 e f(u, ux , uxx, . . .) (3.5)

have been considered in Baikov et al. (1991, 1996). In this example, we look

at two cases. First we search for an f for which (3.5) admits an approximate

conservation law corresponding to the approximate symmetry t - / - x 2 - / - u
1 e - / - t.

An approximate symmetry of (3.5) is x 5 X0 1 e X1 5 t - / - x 2 - / - u
1 e - / - t. A conserved vector associated with the exact symmetry is (T 1

0,

T 2
0) 5 (xux 1 tuux , 2 xut 2 tuut 1 uxx). Let us now invoke the approximate

symmetry condition for the conserved vector, viz. (2.6), which gives X0T
1
1

5 2 X1T
1
0 and X0T

2
1 5 2 X1T

2
0. The solutions for T 1

1 and T 2
1 are

T 1
1 5

1

2
u2ux 1 g, T 2

1 5 2
1

2
u2ux 1

1

2
u2(uux 2 ut) 1 h

where g and h are as yet arbitrary functions of t, ux , utx, uxx, x 1 ut, uxu 2
ut. Now we impose the condition for approximate conservation law DtT

1
1 1

Dx T 2
1 5 f. An admissible function f, for g 5 0 and h 5 0, is f 5 f1 5

uxx(u
3/2 2 u2/2) 1 u2

x(3u2/2 2 u). Hence an approximate conserved vector

of (3.5) with f 5 f1 corresponding to the approximate symmetry t - / - x 2 - /

- u 1 e - / - t is

(71, 72) 5 1 xux 1 tuux 1 e
1

2
u2 ux , 2 xut 2 tuut 1 uxx

1 e
1

2
u2 [ 2 ux 2 ut 1 uux] 2
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Now we show that equation (3.5), for f 5 u, with respect to the approxi-

mate symmetry

- / - t 2 c - / - x 2 3 e t - / - t 1 e (ct 2 x) - / - x 1 e (2u 2 c) - / - u

does not admit a second-order approximate conservation law.

An approximate symmetry admitted by (3.5) for f 5 u is x 5 X0 1
e X1 , where

X0 5 - / - t 2 c - / - x, X1 5 2 3t - / - t 1 (ct 2 x) - / - x 1 (2u 2 c) - / - u

A conserved vector associated with X0 has components T 1
0 5 1±2 u2 and T 2

0 5
1±2 u2

x 2 uuxx 2 1±3 u3. Now the relations (2.6), viz. X0T
1
1 5 2 X1T

1
0 1 T 1

0 and

X0T
2
1 5 2 X1T

2
0 1 3T 2

0 1 cT 1
0, yield

T 1
1 5 (cu 2 3±2 u2)t 1 g

T 2
1 5 (cuxx 2 3u3 1 3±2 cu2 1 9±2 u2

x 2 9uuxx)t 1 h

where g and h are functions of u, x 1 ct, ut , ux , utt, utx, uxx. Substituting
these into the conserved of the approximate part gives D tT

1
1 1 DxT

2
1 5 2 u2,

from which, after straightforward but tedious calculations, it is determined

that no solution for T 1
1 and T 2

1 exists, i.e., the approximate symmetry x of

(3.5) for f 5 u has no associated approximate second-order conservation law.
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